Finite-Element Analysis of Bone Stresses on Primary Impact in a Large-Animal Model: The Distal End of the Equine Third Metacarpal

نویسندگان

  • Cristin A. McCarty
  • Jeffrey J. Thomason
  • Karen D. Gordon
  • Timothy A. Burkhart
  • Jaques S. Milner
  • David W. Holdsworth
چکیده

OBJECTIVE To assess whether the transient stresses of foot impact with the ground are similar to those found during midstance loading and if the location of high stress correlate with the sites most commonly associated with mechanically induced osteoarthritis (OA). We compared impact stresses in subchondral bone between two subject-specific, three-dimensional, finite-element models of the equine metacarpophalangeal (MCP) joint-one with advanced OA and one healthy, and with similar published data on the stresses that occur at midstance. METHODS Two right MCP joints (third metacarpal and proximal phalanx) were scanned using micro-computed tomography (μCT). Images were segmented, and meshed using modified 10-node quadratic tetrahedral elements. Bone material properties were assigned based on the bone density. An impact velocity of 3.55 m/s was applied to each model and contact pressures and stress distribution were calculated for each. In a separate iteration, the third metacarpal was loaded statically. A sampling grid of 160 equidistant points was superimposed over selected slices, and average peak stresses were calculated for 6 anatomical regions. Within-region maximal peak and average von Mises stresses were compared between healthy and OA bones in both midstance and impact loading. RESULTS Average impact stresses across all regions, in both locations (palmar and dorsal) were greater in the OA model. Highest impact stresses were located in the dorsal medial condyle in the healthy (12.8 MPa) and OA (14.1MPa) models, and were lowest in the palmar medial and lateral parasagittal grooves in the healthy (5.94 MPa) and OA (7.07 MPa) models. The healthy static model had higher peak (up to 49.7% greater) and average (up to 38.6% greater) stresses in both locations and across all regions compared to the OA static model. CONCLUSIONS Under simulated footfall a trot, loading on the dorsal aspect of the third metacarpal at impact created stresses similar to those found during midstance. The high accelerations that occur under impact loading are likely responsible for creating the high stresses, as opposed to midstance loading where the high stresses are the result of high mass loading. Although the stress magnitudes were found to be similar among the two loading conditions, the location of the high stress loading occurred in sites that are not typically associated with osteoarthritic changes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating the Stress Distribution Applied to Edentulous Ridge from Polyamide and Cobalt-Chrome Removable-Partial-Dentures using Three-Dimensional Finite-Element-Analysis

Abstract: Objective: The objective of this study was to compare the Von-Mises-stress (VMS) distribution applied to the edentulous ridges from a Polyamide RPD (PRPD) with those from a Cobalt-Chrome RPD (CCRPD). Materials and Methods: A patient with mandibular Kennedy Class I, Mod I was selected. The patientchr(chr('39')39chr('39'))s CBCT was cut off at 1 mm sections from the axial dimension. ...

متن کامل

An investigation of the effects of osteoporosis, impact intensity and orientation on human femur injuries: a parametric finite element study

Objective: Femur is the strongest, longest and heaviest bone in the human body. Due to the great importance of femur in human body, its injury may cause large numbers of disabilities and mortality. Considering various effective parameters such as mechanical properties, geometry, loading configuration, etc. can propel the study to the trustable results.. Methods: A 3D finite element model of the...

متن کامل

Second Molar Uprighting with Temporary Anchorage Devices: A Finite Element Study

BACKGROUND AND OBJECTIVE: Premature loss of mandibular first molar is a common problem in adults. Mesial tipping of second molar may occur in this situation. Various orthodontic mechanics have been proposed for molar uprighting. The aim of this study was to compare four methods of molar uprighting using Finite Element Analysis(FEM). METHODS: In first model of this finite element study, a 0.019...

متن کامل

Immediately loaded Xive and Nisastan implants the effect of macro-design on distribution of strain in surrounding bone: A finite element analysis

Immediately loaded Xive and Nisastan implants the effect of macro-design on distribution of strain in surrounding bone: A finite element analysis Dr. A. Fazel * - Dr. SH. A. Alai ** - Dr. M. Rismanchian *** *Associate Professor of Prosthodontics Dept., Faculty of Dentistry and Dental Research Center, Tehran University / Medical Sciences. **Assistant Professor of Prosthodontics Dept., Faculty of...

متن کامل

Evaluating the impact of length and thread pitch on the stress distribution in dental implants and surrounding bone using finite element method

 longevity of osseointegrated implants are intensely influenced by biomechanical factors. Control of these factors prevents mechanical complications, which include fracture of screws, components, or materials veneering the framework. In this study, the impact of length and threads pitch of dental implants on the stress distribution and maximum Von Mises stress in implant-abutment complex and ja...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016